OPB665, OPB666, OPB667, OPB668 (N and T Series)

Features:

- Non-contact switching
- PCBoard mounting
- Enhanced signal to noise ratio
- Choice of four Logical output options

Description:

Each OPB615, OPB625 and OPB665 series slotted optical switch consists of an 890 nm, infrared Light Emitting Diode (LED) and a monolithic integrated circuit that incorporates a photodiode, a linear amplifier and a Schmitt trigger on a single silicon chip. OPB665 offers two mounting options -- no tabs (N) or two tabs (T).

All devices in this series exhibit performance over supply voltages ranging from 4.5 V to 16.0 V , and may be specified as Buffered or Inverted with 10 kW Pull-up or Open Collector output. Devices are also TTI/LSTTL compatible and can drive up to 10 TTL loads.

Custom electrical, wire and cabling and connectors are available. Contact your local representative or OPTEK for more information.

Applications:

- Mechanical switch replacement
- Speed indication (tachometer)
- Mechanical limit indication
- Edge sensing

Ordering Information					
Part Number	Package Style	Sensor Photologic®	Aperture Emitter I Sensor	Slot Width / Depth	Lead Length / Spacing
OPB615	N	10K Pull-up	None	$\begin{gathered} 0.150 " / \\ 0.240 " \end{gathered}$	$\begin{gathered} 0.100 "(\min) / \\ 0.275^{\prime \prime} \end{gathered}$
OPB616		Open Collector			
OPB617		Inv-10K Pull-up			
OPB618		Inv-Open Collector			
OPB625		10K Pull-up	None	$\begin{gathered} 0.190 " / \\ 0.285 " \end{gathered}$	$\begin{gathered} 0.100 "(\min) / \\ 0.320^{\prime \prime} \end{gathered}$
OPB626		Open Collector			
OPB627		Inv-10K Pull-up			
OPB628		Inv-Open Collector			
OPB665N		10K Pull-up	0.05"/ 0.01"	$\begin{gathered} 0.125 " / \\ 0.345 " \end{gathered}$	
OPB666N		Open Collector			
OPB667N		Inv-10K Pull-Up			
OPB668N		Inv-Open Collector			
OPB665T	T	10K Pull-up			
OPB666T		Open Collector			
OPB667T		Inv-10K Pull-up			
OPB668T		Inv-Open Collector			

RoHS
OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

OPB625, OPB626, OPB627, OPB628 Series
OPB665, OPB666, OPB667, OPB668 (N and T Series)

OPB 616/626/666N Buffered Open-Collector
OPB618/628/668N Inverted Open-Collector

OPB615/625/665N Buffered 10K Pull-Up

OPB617/627/667N Inverted 10K Pull-Up

OPB625, OPB626, OPB627, OPB628 Series
OPB665, OPB666, OPB667, OPB668 (N and T Series)
OPB625, OPB626, OPB627, OPB628

Pin Colorl Number	Description
1	Anode
2	Cathode
3	Vcc
4	Output
5	Ground

OPB665, OPB666, OPB667, OPB668 (N and T)

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Photologic® Slotted Optical Switch OPB615, OPB616, OPB617, OPB618 Series
 OPB625, OPB626, OPB627, OPB628 Series
 OPB665, OPB666, OPB667, OPB668 (N and T Series)

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Storage \& Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Lead Soldering Temperature (1/16 inch $(1.6 \mathrm{~mm})$ from the case for 5 sec . with soldering iron $)^{(1)}$	$260^{\circ} \mathrm{C}$

Input Diode

Forward DC Current	50 mA
Peak Forward Current $(1 \mu \mathrm{~s}$ pulse width, 300 pps$)$	3 A
Reverse DC Voltage	3 V
Power Dissipation $^{(2)}$	100 mW

Output Photologic ${ }^{\circledR}$

Supply Voltage, V_{CC}	18 V
Duration of Output Short to V_{CC}	1 second
Voltage at Output $^{(5)}$	Vcc
Low Level Output Current (sinking)	16 mA
Power Dissipation ${ }^{(3)}$	$240^{\circ} \mathrm{mW}$

Notes:

(1) RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering.
(2) Derate linearly $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
(3) Derate linearly $2.50 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
(4) Normal application would be with light source blocked, simulated by $I_{F}=0 \mathrm{~mA}$.
(5) Open Collector devices $=30$ volts

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS

Input Diode

V_{F}	Forward Voltage	-	-	1.6	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
I_{R}	Reverse Current	-	-	100	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{R}}=3 \mathrm{~V}$

Output Photologic ${ }^{\circledR}$ Sensor

V_{CC}	Operating DC Supply Voltage						
	LED Positive-Going	OPB615-618	0.5	-	16	V	
	Threshold Current	OPB625-628	0.1	0.55	3		$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
		OPB665-668	0.1	0.6	3	mA	
$\mathrm{I}_{\mathrm{F}(+)} / \mathrm{I}_{\mathrm{F}(-)}$	Hysteresis		1.05	1.20	1.90		$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$

OPB625, OPB626, OPB627, OPB628 Series
OPB665, OPB666, OPB667, OPB668 (N and T Series)
Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS

Output Photologic® Sensor

$\mathrm{I}_{\mathrm{CCH}}$	High Level Supply Current: Buffer, 10k Pull-up Buffer, Open-Collector	OPB615, 625, 665 OPB616, 626, 666	-	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	mA	NO LOAD on Output ${ }^{(3)}$
	Inverted, 10k Pull-up Inverted, Open-Collector	OPB617, 627, 667 OPB618, 628, 668		$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	mA	NO LOAD on Output $\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{CCL}}$	Low Level Supply Current: Buffer, 10k Pull-up Buffer, Open-Collector	OPB615, 625, 665 OPB616, 626, 666	-	$\begin{aligned} & 5.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	mA	NO LOAD on Output $\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$
	Inverted, 10k Pull-up Inverted, Open-Collector	OPB617, 627, 667 OPB618, 628, 668		$\begin{aligned} & 6.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	mA	NO LOAD on Output ${ }^{(3)}$
V_{OH}	High Level Output Voltage: Buffer, 10k Pull-up Buffer, Open-Collector	OPB615, 625, 665 OPB616, 626, 666	$\mathrm{V}_{\mathrm{cc}}-1.5$	-	-	V	$\mathrm{I}_{\mathrm{OH}}=100 \mu \mathrm{~A}^{(3)}$
	Inverter, 10k Pull-up Inverter, Open-Collector	OPB617, 627, 667 OPB618, 628, 668	$\mathrm{V}_{\mathrm{cc}}-1.5$	-	-	V	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=100 \mu \mathrm{~A}^{(1)} \\ & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA} \end{aligned}$
Іон	High Level Output Voltage: Buffer, Open-Collector	OPB616, 626, 666	-	-	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{OH}}=30 \mathrm{~V}^{(3)}$
	Inverter, Open-Collector	OPB618, 628, 668	-	-	100	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{OH}}=30 \mathrm{~V}^{(1)}$
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage: Buffer, 10k Pull-up Buffer, Open-Collector	OPB615, 625, 665 OPB616, 626, 666	-	-	0.4	V	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}, \mathrm{Vcc}=4.5 \mathrm{~V}^{(3)(1)}$
	Inverter, 10k Pull-up Inverter, Open-Collector	OPB617, 627, 667 OPB618, 628, 668	-	-	0.4	V	$\mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Output Rise Time, Output Fall Time			30		ns	$\begin{aligned} & \mathrm{f}=10 \mathrm{kHz}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{DC}=50 \%{ }^{(3)} \end{aligned}$
$t_{\text {PLH }}$	Propagation Delay, Low-High Buffer, 10k Pull-up Buffer, Open-collector	OPB615, 625, 665 OPB616, 626, 666		0.6		$\mu \mathrm{s}$	
	Inverter, 10k Pull-up Inverter, Open-Collector	OPB617, 627, 667 OPB618, 628, 668		3.0		$\mu \mathrm{s}$	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay, High-Low Buffer, 10k Pull-up Buffer, Open-collector	OPB615, 625, 665 OPB616, 626, 666		3.0		$\mu \mathrm{s}$	
	Inverter, 10k Pull-up Inverter, Open-Collector	OPB617, 627, 667 OPB618, 628, 668		0.6		$\mu \mathrm{s}$	
Data Rate			-	100	-	kHz	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{DC}=50 \%{ }^{(4)}$

Notes:
(1) Normal application would be with light source blocked, simulated by $I_{F}=0 \mathrm{~mA}$.
(2) $\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$ for $\mathrm{V}_{\mathrm{CC}}=4.5$ to 16 Volts.
(3) $I_{F}=5 \mathrm{~mA}$ OPB615 to OPB628; $\mathrm{I}_{F}=10 \mathrm{~mA}$ OPB665 to OPB668
(4) $I_{F}=0$ to 5 mA OPB615 to OPB628; $\mathrm{I}_{\mathrm{F}}=0$ to 10 mA OPB665 to OPB668

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

OPB625, OPB626, OPB627, OPB628 Series

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Photologic® Slotted Optical Switch OPB615, OPB616, OPB617, OPB618 Series OPB625, OPB626, OPB627, OPB628 Series OPB665, OPB666, OPB667, OPB668 (N and T Series)

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

